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I ‘met’ my fellow prospective college freshers on Messenger about a month ago. I suppose that the 

light-hearted chatter about baking, Netflix, and raspberry gin provides an escape from the tedium of 

lockdown. Even so, it would be a lie to claim that we are not worried – the occasional exchange of 

distressed voice notes is evidence enough. Cambridge has cancelled all 2020-21 lectures. The freshers’ 

fair was (predictably) the next to yield. What next, we ask. What next?  

Answering the ‘what next?’ question is not always straightforward, particularly in epidemiology. If we 

were to consider everything about every person in the community – where they go, who they meet, their 

physiology, etc. – it would in principle be possible to predict every transmission route, every infection, 

every recovery. This is, obviously, an impossibly complex task for any computer. Nevertheless, we can 

make good predictions of such chaotic systems, if the number of individuals is sufficiently large.  

Consider, for example, this popular fairground game (Fig. 1). 

I start with releasing a single ball from the top. Unless I 

measure everything (angle and height of release, mass and 

radius of ball, etc.) ridiculously accurately, I have no way of 

consistently predicting where this one ball will land. However, 

a pattern emerges when I repeat this with many balls. When 

the ball meets a peg, the probability of it going left is roughly 

equal to it going right; therefore, we can reasonably predict the 

frequency that one ball will end up in a certain pocket. (For the 

aspiring mathematicians, this probability distribution is 

governed by the famous Pascal’s triangle.) 

We have established that we can get a good idea of the behaviour of chaotic systems, given that the 

number of trials is large enough. To simplify the situation, every individual in our community could 

be considered as an independent1 ‘trial’ of the system, as they follow the same rules of probability that 

underlie the epidemic. You might have heard of the Imperial2 and Oxford3 models: both mathematically 

elegant and sound, but offer different conclusions. The Imperial model is an individual-based model 

which, using our fairground game analogy, attempts to predict the outcome of every single ball; the 

Oxford model is a mathematically more simple method which considers groups of people, hence a 

population-based model. My approach more resembles the Oxford method in accounting for the 

population as a whole – not all of us have a supercomputer in our room! 

Where to begin 

Dr. John Cullerne’s earlier Plague Pit publication4 introduces the SIR model (Fig. 2). He visualises 

three ‘reservoirs’, corresponding to the susceptible, infective, and recovered people respectively. We 

also assume, like the Oxford model, that all people who recover become immune5. The progression of 

the epidemic will be determined by the rate of flow between the reservoirs.  

                                                      
1 The assumption of ‘independence’ here might seem a little shaky, as people meeting up is likely not to be independent. 

However, as said, if there are enough people in the community and enough ‘meetings’, this assumption is fairly reasonable. 
2 Ferguson NM, Laydon D, Nedjati-Gilani G et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 

mortality and healthcare demand. Imperial College London. March 2020. 
3 Lourenço J, Paton R, Ghafari M et al. Fundamental principles of epidemic spread highlight the immediate need for large-

scale serological surveys to assess the stage of the SARS-CoV-2 epidemic. University of Oxford. March 2020. 
4 Cullerne JP. What is it to model an epidemic? The Plague Pit. April 2020. https://plaguepit.com/modelling/ 
5 This assumption seems reasonable enough. There is, however, not enough evidence to show that people can indeed become 

immune forever after infection! This uncertainty is one of the reasons why a coronavirus vaccine has never been developed 

successfully. This may be a subject for future discussion. 

Fig. 1. The ‘Pascal’s triangle’ fairground game. 



There will be some mathematical notation, although used rather 

sparingly. The maths is meant to elaborate on Dr Cullerne’s article. 

For the readers who shudder at the sight of an x, you may consider 

skipping to wherever you are most comfortable. Don’t panic! 

For simplicity’s sake, we have also assumed an unchanging 

population – a good assumption, considering that birth and death 

rates are roughly the same, and movement across the border has been 

frozen due to the global outbreaks.  

The rate at which S flows into I, i.e. the infection rate, will be 

dependent on both the number of susceptibles and the number of infectives. It would be reasonable to 

assume that the chance of an infection happening would be higher if a) there are more people to infect, 

and b) there are more people who can infect! As this is a one-way system, we can express the rate of 

change of S over time as follows: 

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼   (i) 

The d essentially indicates a difference, so 
𝑑𝑆

𝑑𝑡
 is the change in the number of susceptibles over time. 𝛽 

is just some numerical constant. The rate is negative because it represents a loss of susceptibles. 

The rate at which I flows into R, i.e. the recovery rate, will be dependent on the number of infectives. 

Surely more people would recover if there were more people who can recover! Following the 

assumption that all recovered people stay immune, i.e. another one-way system, we can write the 

following expression: 

𝑑𝑅

𝑑𝑡
= 𝛼𝐼   (ii) 

As above, 
𝑑𝑅

𝑑𝑡
 is the change in the number of recovered people over time, 𝛼 is another constant, and the 

rate is positive because the amount of recovered people can only increase (there is no way back!). 

I receives people from S and loses people to R. Logically, the rate at which S loses people to I must 

equal the rate at which I gains people from S, and the same can be said for I and R. Therefore, this 

statement should not be controversial: 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛼𝐼   (iii) 

If the number of infectives increases, then 
𝑑𝐼

𝑑𝑡
 at that moment in time must be positive. If we have a 

negative 
𝑑𝐼

𝑑𝑡
, the number of infectives drop, signalling that the epidemic is past its peak. 

Something interesting happens when we manipulate (iii): 

𝑑𝐼

𝑑𝑡
= (𝛽𝑆 − 𝛼)𝐼 

For 
𝑑𝐼

𝑑𝑡
 to be positive, (𝛽𝑆 − 𝛼) must be greater than 0. The threshold condition, is therefore 

𝛽𝑆

𝛼
= 1. 

Above that, the epidemic soars; below that, the epidemic dies down. If we consider what this means: 

 𝛽 is the infection rate, or the probability of infection per unit time; 

 
1

𝛼
 is actually the mean lifetime of an infective (i.e. how long it takes for an infective to recover); 

 𝑆 is just the number of susceptibles. 

Fig. 2. The SIR model. 

Diagram taken from (4). 



Therefore 
𝛽𝑆

𝛼
 is essentially ‘probability of infection per time × time × number’, i.e. the expected number 

of new infections in that time! This is the famous R0 that you will have heard about: the average 

number of people an infective can spread the disease to. The subscript 0 indictaes that the value here is 

for the beginning of the epidemic at t = 0. 

If we consider this at the very start of an epidemic (t = 0), something subtle emerges. As shown, for an 

epidemic to take off, 
𝛽𝑆

𝛼
 must be larger than 1. Therefore, for an epidemic to even start in the first place, 

enough susceptibles must be present at the start (that threshold is of course 
𝛼

𝛽
)! This is one of the 

targets of social distancing: by creating physical barriers between groups of people, the effective 

susceptible population in an area is reduced, reducing the chance of an outbreak starting. 

We can now calculate a variety of epidemic curves, based on these three equations (i-iii). (I view R0 as 

merely a useful by-product of the mathematics, and not what we base our models on.) These curves can 

then be fitted to existing data. The ‘training wheels’ of our modelling journeys have often been the data 

from the 1666 Black Death outbreak in Eyam, which features in Dr. Cullerne’s article. (I also reference 

his original Eyam paper here6.) How will our model fare against the COVID-19 outbreaks? 

The Pearl passes the test 

Armed with the experience of SARS (severe acute respiratory syndrome; caused by SARS-CoV) in 

2003, Hongkongers were quick to react when word of the Wuhan outbreak got out. The medical system 

was already alerted in early January, despite Chinese officials claiming that there was ‘no evidence’ of 

human-to-human transmission. Every citizen, remembering the costly battle with its predecessor, was 

wearing a facemask by Chinese New Year7; schools were already closed before then, fearing the worst. 

On 25th January, three days after the first imported case from Wuhan, the government declared the 

highest level of emergency. The decisive measures taken by the government and hospitals, combined 

with the discipline of citizens, were able to suppress the epidemic effectively; the first wave8 was stalled 

at only 73 active (imported and local cases 

combined) cases at its peak9. 

The Hong Kong first wave data, like the Eyam 

data, was very well documented. Through 

rigorous testing, hospitals managed to track 

down every single case; patients were closely 

monitored in quarantine, so their times of 

recovery were reliable (they have to test 

negative twice!). This means that we can 

calculate, with confidence, the number of 

active cases on any day. I will spare you the 

maths, but here is a curve fitted to the Hong 

Kong data (Fig. 3). Note that I have actually 

subtracted 14 after calculating the number of 

active cases for every day, as the first 14 cases 

were all imports from Wuhan10, and so not 

governed by the mathematical rules of the local 

                                                      
6 French A, Kanchanasakdichai O, Cullerne JP. The pedagogical power of context: iterative calculus methods and the 

epidemiology of Eyam. Phys. Educ. 2019. 
7 Taken from conversations over the phone with family and friends who were in Hong Kong at the time. 
8 The ‘second wave’ from March to May consisted almost only of imported cases, mainly from the UK and US. 
9 https://www.statista.com/statistics/1105425/hong-kong-novel-coronavirus-covid19-confirmed-death-recovered-trend/ 

N.B. Note that the above data is cumulative. The number of active cases on any day must be calculated using the recoveries. 
10 https://chp-dashboard.geodata.gov.hk/covid-19/en.html 

Fig. 3. The curve of best fit (blue) to the Hong Kong first wave data 

(orange). Note that a) the time axis is shifted so that t = 0 at the chosen 

peak value, and b) the infectives on the y-axis are in units of ρ, the 

threshold number of susceptibles (which also turns out to be α/β, as 

shown earlier). 

https://www.statista.com/statistics/1105425/hong-kong-novel-coronavirus-covid19-confirmed-death-recovered-trend/


transmission. (Afterwards, the number of imported cases was 

very small when compared to the local cases as the borders 

closed.) 

A family of curves were calculated, each based on different 

peak values and epidemic constants; out of all these curves, 

we pick the one that is closest to the real data points (Fig. 4). 

This best-fit curve corresponds to an R0 of about 1.5, a 

threshold susceptible population* of 659, and a peak value of 

55 active local cases. It is worth noting that our model relies 

on choosing a peak value for the epidemic; if the data we are 

using has not peaked yet, then we will have to guess the 

position of the peak, which is a very unreliable approach. 

* Recall that the threshold susceptible population is 
𝛼

𝛽
, as 

𝛽𝑆

𝛼
> 1 is required 

for the epidemic to take off. 

 

What next? 

But despite seeming a decent fit on paper, exactly how good is our curve? One thing that the SIR model 

does not account for is the incubation period. In the case of COVID-19, symptoms manifest on average 

5-6 days after exposure to the virus, but this period can be anywhere from 2 to 14 days11. One way to 

solve this is to add another compartment to our S-I-R flow: 

 

Fig. 5. A flow diagram for the SHIR model – essentially the SIR but with an extra ‘hidden’ compartment, indicated by H. 

Here I have inserted the compartment H for ‘hidden infectives’ (Fig. 5). There are now two βs for the 

two ways a susceptible can be infected (by an invisible or symptomatic infective). Assuming a fixed 

probability for the decay of H into I, we introduce another constant γ (the probability of decay; 1/γ is 

the mean time to decay) to govern this process. We can also expect that βSH > βSI, as asymptomatic 

carriers are still infective, and they might infect more people on average than symptomatic patients 

(who, upon suspecting that they are infected, will isolate themselves!). The difference γ makes is huge: 

The incubation time can also be interpreted as the 

time to detection. With widespread community 

testing, this time will drop, as carriers are identified 

and isolated quicker; the result is that the infectives 

curve is ‘flattened’ (i.e. the blue curve in Fig. 5). If 

the hidden infectives are left to spread the disease 

among the population, the curve is not flattened (i.e. 

the orange curve in Fig. 5).  

These attempts to ‘flatten the curve’ are important so 

the medical system is not overloaded around the peak 

– the nightmare scenario that New York had to face, 

                                                      
11 Coronavirus disease 2019 (COVID-19) situation report 73. World Health Organisation. 2 April 2020. 

S H I R

Fig. 4. The search for the combination of epidemic 

constants (here Z, the proportion of susceptibles 

who succumb, and α) that minimises the sum of 

squared differences (SSD) between the calculated 

and recorded time-values. SSD is a measure of 

how closely a curve fits the data points. The lowest 

point on this surface, i.e. when SSD is a minimum, 

corresponds to Z = 0.56 and α = 0.31. 

βSHSH + βSISI γH αI 

Fig. 6. An arbitrary epidemic model using the SHIR system. 

Here S0 is set at 1000, α at 0.03, βSH at 3×10-4, βSI at 3×10-5. 

Note that γ is the reciprocal of the incubation time. 
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when even the morgues could not cope with the drastic increase in deaths. Fortunately, the NHS seems 

to be doing rather well thanks to the forced lockdown, but remember that social distancing only works 

if everyone does it! 

Answering the question of ‘what next?’ in epidemiology would be to predict the progression of the 

epidemic, and use that to influence our plans in the near future. However, hindsight is equally as 

important, if not more; the curve and its associated epidemic constants provide us with a foundation 

from which we can build our analyses. It is also worth noting that the Hong Kong data is unnatural, due 

to a) the exceptionally quick identification and isolation of infectives, and b) the effective barrier to 

transmission that widespread mask-wearing and good hand hygiene provides.  

The logical extension to this work is to compute the best-fit curves for other countries; in doing so, we 

can collect and compare their epidemic constants (R0 etc.). This might prove useful in hindsight as we 

review the approaches of different countries, and attempt to find things in common between them that 

correlate with successful control. It will, however, not be as straightforward as it seems; the lack of 

recovery data in the UK will present more mathematical challenges. 

So what is next? Time, and the collection of more (hopefully reliable) data, will tell. However, we can 

be sure of one thing: the war is not over yet, and like the First World War, may not be truly over ‘by 

Christmas’. Until then, cover your face, stay socially distanced, and I’ll see you on the other side. 

 


